4PC (TN, MT, ET)

Photonics Wafer-Prober: alignment automation & wafer-level testing

Are you a hands-on student who actually likes making things work in the lab. We need someone to turn a half-built wafer prober into a reliable measurement tool, demonstrate manual and automated measurement flows, and run some tests afterwards. This is a practical, technical internship with real responsibility. 

We are developing a custom wafer-level optical test setup (see the figure) to characterize photonic integrated circuits (PICs). The system combines a Steinmeyer wafer stage (for wafer motion, ~ 1 micro repeatability) with two Precibeo GO HexStage (~ 100 nm repeatability, for alignment of optical probes). The entire setup is mounted on a Thorlabs ScienceDesk with a precision breadboard, integratedable with laser sources, OSA, power meter, polarization controller and microscope. In the upcoming weeks, the mechanical parts (probe, holder, microscope) will be delivered and mechanically mounted. 

The goal is to turn this setup into a fully functional wafer prober that can perform precise optical tests directly on wafer or die. At the moment, the hardware is  being assembled, but the system is not yet operational.  This work will transform wafer-level prober into a functional system which is capable of reproducible optical measurements. 

What you will do: 

  • Task  1– Manual sample alignment and probing 

You will demonstrate controlled, manual alignment between the optical probe (fiber or lens-fiber assembly) and the on-wafer test sites. 

Here, your goal is to: 

  • learn how to safely approach the wafer surface without crashing the probes, 
  • optimize optical coupling manually while monitoring microscope and power readout, 
  • document the best-practice procedure for manual alignment and measurement, 
  • produce a short demo showing stable and repeatable coupling on a few sample dies. 
  • Task  2–Automatic multi-sample alignment and measurement 

After mastering manual probing, you will assist to transform it into an automated process. 

You will work with a technician who is developing the low-level motion control software, to implement the high-level logic that automatically: 

  • moves from one die to the next on the wafer, 
  • locates the optical site or fiducial via vision or stored coordinates, 
  • performs an automated approach and fine-alignment sequence, 
  • collects measurement data (power, spectra, IV) and logs metadata for every die. 
  • It is also a wish to have some statistics about the performance. 

This work will turn manual “one-spot” measurements into reliable, unattended wafer-map testing. 

  • Task  3 – Measurements (once the setup is operational) – nice to have 

Once the setup is fully functional, you will conduct a series of experiments to evaluate its performance, gather real wafer data and fill some knowledge gap questions for the main project, 4PC. These studies address fundamental questions about the reproducibility, stability, and accuracy of wafer-level photonic tests. 

  • Reproducibility across wafers: measure optical transmission, insertion loss, and wavelength shift across many dies and wafers. Analyze spatial patterns (center vs. edge) and wafer-to-wafer consistency. 
  • Polarization sensitivity: characterize how optical power and spectra vary with input polarization. compare single-mode and polarization-maintaining fiber probes and evaluate need for polarization control. 
  • Focus and tilt dependence: study how small deviations in probe height and angular alignment affect coupling efficiency to define mechanical and optical tolerances. 
  • Stability and failure mechanisms: perform stress tests to observe degradation, contact wear, and contamination effects during repeated probing or extended operation. 

Knowledge and Skills:  

  • Solid background in optics, photonics, mechatronics or applied physics 
  • Comfortable in a lab environment (fiber coupling, grating couplers, microscope use, safety discipline) 
  • Able to work with LabVIEW for instrument control, and has strong MATLAB or Python scripting for data analyze. 
  • Familiarity with motion control, alignment procedures and optical measurements 
  • Responsible, methodical work habits and clear documentation skills 

(desirable skills) 

  • Previous experience with Precibeo hexapods, Steinmeyer stages or similar motion hardware. 
  • Experience with optical spectrum analysis, wafer probing. 
  • Familiarity with automated test state machines. 

Location 
This is a joint-internship between Applied Nanotechnology Research Group at Saxion and Integrated Optical Systems at University of Twente (UT). Practical work will be held mainly in UT campus. This is an in-lab position. There will be two supervisors from each parties.  

Project duration:
Spring 2025/2026 (Feb – July)

Internship or graduation project:
Open for internship project only

 Educational programs:

  • Applied Computer Science (TI) 
  • Engineering background with good programming skills 

Interested? Then, please send a brief motivation letter outlining your relevant experience and CV before the 16th of January 2026  to appliednanotechnology.led@saxion.nl  and include Dr. Sevilay Akca s.akca@saxion.nl   and Dr. Lantian Chang l.chang@utwente.nl   in CC.